MATLAB Simulation and Comparison of Zhang Neural Network and Gradient Neural Network for Online Solution of Linear Time-Varying Matrix Equation AXB-C=0
نویسندگان
چکیده
Different from gradient neural networks (GNN), a special kind of recurrent neural networks has been proposed recently by Zhang et al for solving online linear matrix equations with time-varying coefficients. Such recurrent neural networks, designed based on a matrixvalued error-function, could achieve global exponential convergence when solving online time-varying problems in comparison with gradient neural networks. This paper investigates the MATLAB simulation of Zhang neural networks (ZNN) for real-time solution of linear time-varying matrix equation AXB−C = 0. Gradient neural networks are simulated and compared as well. Simulation results substantiate the theoretical analysis and efficacy of ZNN on linear time-varying matrix equation solving.
منابع مشابه
MATLAB Simulation and Comparison of Zhang Neural Network and Gradient Neural Network for Online Solution of Linear Time-Varying Equations
Different from gradient-based neural networks (in short, gradient neural networks), a special kind of recurrent neural networks has recently been proposed by Zhang et al for time-varying matrix inversion and equations solving. As compared to gradient neural networks (GNN), Zhang neural networks (ZNN) are designed based on matrix-valued or vector-valued error functions, instead of scalar-valued ...
متن کاملMATLAB Simulation and Comparison of Zhang Neural Network and Gradient Neural Network for Time-Varying Lyapunov Equation Solving
This paper presents a new kind of recurrent neural network proposed by Zhang et al. for solving online Lyapunov equation with time-varying coefficient matrices. Global exponential convergence could be achieved by such a recurrent neural network when solving the timevarying problems in comparison with gradient neural networks (GNN). MATLAB simulation of both neural networks for the real-time sol...
متن کاملA Solution to the Problem of Extrapolation in Car Following Modeling Using an online fuzzy Neural Network
Car following process is time-varying in essence, due to the involvement of human actions. This paper develops an adaptive technique for car following modeling in a traffic flow. The proposed technique includes an online fuzzy neural network (OFNN) which is able to adapt its rule-consequent parameters to the time-varying processes. The proposed OFNN is first trained by an growing binary tree le...
متن کاملNumerical solution of fuzzy linear Fredholm integro-differential equation by \fuzzy neural network
In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...
متن کاملIdentification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008